An emphatic orthogonal signal correction-support vector machine method for the classification of tissue sections of endometrial carcinoma by near infrared spectroscopy.
نویسندگان
چکیده
A new application of emphatic orthogonal signal correction (EOSC) for baseline correction of near infrared spectra from reflectance measurements of tissue sections is introduced. EOSC was evaluated and compared with principal component orthogonal signal correction (PC-OSC) by using support vector machine (SVM) classifiers. In addition, some exemplary synthetic data sets were created to characterize EOSC coupled to SVM for classification. Orthogonal experimental design coupled with analysis of variance (ANOVA) was used to determine the significant parameters for optimization, which were the OSC method and number of components for the model. EOSC combined with the SVM gave better predictions with respect to a larger number of components and was not as susceptible to overfitting the data as the classifier built with PC-OSC data. These results were supported by simulations using synthetic data sets. EOSC is a softer signal correction approach that retains more signal variance which was exploited by the SVM. Classification rates of 93±1% were obtained without orthogonal signal correction with the SVM. PC-OSC and EOSC data gave similar peak prediction accuracies of 94±1%. The key advantages demonstrated by EOSC were its resistance to overfitting, fine-tuning capability or softness, and the retention of spectral features after signal correction.
منابع مشابه
Near infrared spectroscopy combined with least squares support vector machines and fuzzy rule-building expert system applied to diagnosis of endometrial carcinoma.
OBJECTIVE The feasibility of early diagnosis of endometrial carcinoma was studied by least squares support vector machines (LS-SVM) and fuzzy rule-building expert system (FuRES) that classified near infrared (NIR) spectra of tissues. METHODS NIR spectra of 77 specimens of endometrium were collected. The spectra were pretreated by principal component orthogonal signal correction (PC-OSC) and d...
متن کاملDetection of Glioblastoma Multiforme Tumor in Magnetic Resonance Spectroscopy Based on Support Vector Machine
Introduction: The brain tumor is an abnormal growth of tissue in the brain, which is one of the most important challenges in neurology. Brain tumors have different types. Some brain tumors are benign and some brain tumors are cancerous and malignant. Glioblastoma Multiforme (GBM) is the most common and deadliest malignant brain tumor in adults. The average survival rate for peo...
متن کاملHeart Rate Variability Classification using Support Vector Machine and Genetic Algorithm
Background: Electrocardiogram (ECG) is defined as an electrical signal, which represents cardiac activity. Heart rate variability (HRV) as the variation of interval between two consecutive heartbeats represents the balance between the sympathetic and parasympathetic branches of the autonomic nervous system.Objective: In this study, we aimed to evaluate the efficiency of discrete wavelet transfo...
متن کاملFeature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine
We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...
متن کاملPredicting cardiac arrhythmia on ECG signal using an ensemble of optimal multicore support vector machines
The use of artificial intelligence in the process of diagnosing heart disease has been considered by researchers for many years. In this paper, an efficient method for selecting appropriate features extracted from electrocardiogram (ECG) signals, based on a genetic algorithm for use in an ensemble multi-kernel support vector machine classifiers, each of which is based on an optimized genetic al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Talanta
دوره 83 5 شماره
صفحات -
تاریخ انتشار 2011